Rowmotion on fences

Bruce Sagan
Michigan State University
www.math.msu.edu/~sagan
joint with Sergi Elizalde, Matthew Plante, and Tom Roby

September 16, 2022
Algebraic and Combinatorial Perspectives in the Mathematical Sciences

Rowmotion

Fences

Self-dual posets

Comments and open questions

Let G be a finite group acting on a finite set S. Let $\mathbb N$ be the nonnegative integers and st : $S \to \mathbb N$ be a statistic. If $\mathcal O \subseteq S$ then we let

$$\operatorname{st} \mathcal{O} = \sum \operatorname{st} x.$$

Call st *homomesic* if st $\mathcal{O}/\#\mathcal{O}$ is constant over all orbits \mathcal{O} where the hash tag is cardinality. In particular, st is *c-mesic* if, for all orbits \mathcal{O} .

$$\frac{\mathsf{st}\,\mathcal{O}}{\#\mathcal{O}} = \epsilon$$

 $S_{n,k} := \{w_1w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones} \}$ with rotation $w_1w_2 \dots w_n \mapsto w_nw_1 \dots w_{n-1}$, and inversion statistic inv $w_1w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_j\}$.

Theorem (Propp-Roby)

The inversion statistic is k(n-k)/2-mesic for rotation on $S_{n,k}$.

Call st *homometric* if for any two orbits \mathcal{O}_1 and \mathcal{O}_2 we have

$$\#\mathcal{O}_1 = \#\mathcal{O}_2 \implies \operatorname{st} \mathcal{O}_1 = \operatorname{st} \mathcal{O}_2.$$

Note that homomesy implies homometry, but not conversely.

Ex. When n = 4 and k = 2 there are two orbits

W	inv w	W	inv w	
1100	4	1010	3	
0110	2	0101	1	
0011	0			
1001	2			
average $= 8/4 = 2$		average	average $= 4/2 = 2$	

Let (P, \unlhd) be a finite poset. The sets of *antichains*, *(lower) ideals*, and *upper ideals* of P are

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},$$

 $\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},$
 $\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$

An ideal produces an antichain via $\Delta: \mathcal{I}(P) o \mathcal{A}(P)$ where

$$\Delta(I) = \{x \in P \mid x \text{ is a maximal element of } I\}.$$

An upper ideal produces an antichain via $abla: \mathcal{U}(P)
ightarrow \mathcal{A}(P)$ where

$$\nabla(U) = \{ x \in P \mid x \text{ is a minimal element of } U \}.$$

Ideals produce upper ideals via $c: \mathcal{I}(P) \to \mathcal{U}(P)$ where c(I) = P - I.

H =

Rowmotion on antichains of poset *P* is $\rho: \mathcal{A}(P) \to \mathcal{A}(P)$ where

$$A \stackrel{\Delta^{-1}}{\mapsto} I \stackrel{c}{\mapsto} U \stackrel{\nabla}{\mapsto} \rho(A).$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. *Rowmotion on ideals* of poset P is $\hat{\rho}: \mathcal{I}(P) \to \mathcal{I}(P)$ where

$$I \stackrel{c}{\mapsto} U \stackrel{\nabla}{\mapsto} A \stackrel{\Delta^{-1}}{\mapsto} \hat{\rho}(I).$$

We will study two statistics. For antichains $A \in \mathcal{A}(P)$ define

$$\chi(A) = \#A$$

where the hash symbol is cardinality. For ideals $I \in \mathcal{I}(P)$ define

$$\hat{\chi}(I) = \#I.$$

A *fence* is a poset with elements $F = \{x_1, x_2, \dots, x_n\}$ and covers

$$x_1 \triangleleft x_2 \triangleleft \ldots \triangleleft x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \triangleleft x_{b+1} \triangleleft \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*. Elements on two segments are called *shared*. All other elements are *unshared*. If F has s segments then we let $F = \breve{F}(\alpha_1, \alpha_2, \ldots, \alpha_s)$ where for all i

$$\alpha_i = (\# \text{ of unshared elements on segment } i) + 1.$$

As an example of rowmotion on antichains in a fence, consider F below and $A = \{x_1, x_4, x_8\}$ indicated by squares. So $\rho(A) = \{x_2\}$.

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row i from the top corresponding to the ith segment S_i from the left. We color the box for S_i by black if $S_i \cap A$ is an unshared element, red if $S_i \cap A$ is a shared element, or yellow if $S_i \cap A = \emptyset$.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F = \breve{F}(\alpha_1, \ldots, \alpha_s)$ as a tiling of a cylinder C_s of boxes having s rows. One of the orbits in $\breve{F}(4,3,4)$ has the following tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If $\alpha=(\alpha_1,\ldots,\alpha_s)$, then an α -tiling is a tiling of C_s using yellow 1×1 tiles, red 2×1 tiles, and black $1\times (\alpha_i-1)$ tiles in row i, for $1\leq i\leq s$, such that the following hold for all rows.

- (a) If $\alpha_i \geq 2$ and the red tiles are ignored, then the black and yellow tiles alternate in row i.
- (b) There is a red tile in a column covering rows i and i+1 if and only if either the next column contains two yellow tiles in those two rows when i is odd, or the previous column contains two yellow tiles in those two rows when i is even.

 $b_i :=$ the number of black tiles in row i of a tiling,

 $r_i :=$ the number of red tiles with top box in row i of a tiling,

 $\chi(\mathcal{O}) :=$ the number of antichain elements in orbit \mathcal{O} .

Lemma (EPRS)

Given an orbit $\mathcal O$ in fence $\breve{\mathbf F}(\alpha)$ with corresponding α -tiling

$$\chi(\mathcal{O}) = \sum_{i=1}^{s} (b_i \alpha_i - b_i + r_i).$$

One can also compute χ_x , the number of times a given element x appears in an orbit, and derive corresponding results for ideals.

Theorem (EPRS)

- 1. If x is unshared and y, z are the shared elements on the same segment S_i then $\alpha_i \chi_x + \chi_y + \chi_z$ is 1-mesic.
- 2. For $\check{F}(a,b)$ all orbits \mathcal{O} have size $\ell = \operatorname{lcm}(a,b)$ except one \mathcal{O}' of size $\ell+1$. For the orbits of size ℓ we have $\chi(\mathcal{O}) = \frac{2ab-a-b}{\gcd(a,b)} := m$. For the other orbit $\chi(\mathcal{O}') = m+1$.

Let P^* be the dual of poset P. Suppose P is self dual so that $P\cong P^*$. Thus there exists and order-reversing bijection $\kappa:P\to P$. Define the *ideal complement* of $I\in\mathcal{I}(P)$ as

$$\overline{I} = c \circ \kappa(I)$$

where c(S) = P - S for any $S \subseteq P$. Note that $\#I + \#\overline{I} = \#P$.

Ex.
$$\kappa(x_i) = x_{9-i}$$

 $\hat{\chi}(\mathcal{O})$ = the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \overline{I} \in \mathcal{O}$ for some orbit \mathcal{O} , then

$$\frac{\hat{\chi}(\mathcal{O})}{\#\mathcal{O}} = \frac{n}{2}.$$

2. If $I \in \mathcal{O}$ and $\overline{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\#\mathcal{O} = \#\overline{\mathcal{O}}$ and

$$\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})} = \frac{n}{2}.$$

Consider the group generated by the action of $\hat{\rho}$ and the map $I \mapsto \overline{I}$. The orbits of this action will be called *dihedral orbits*.

Corollary (EPRS)

If P is self-dual with n = #P then $\hat{\chi}$ is (n/2)-mesic on dihedral orbits.

Constant α .

Let
$$\alpha = (a^s) = (\underbrace{a, \dots, a}_s)$$
.

Conjecture

If $F = \check{F}(a^s)$ with s odd then then the statistic $\hat{\chi}$ is n/2-mesic where n = #F.

For $\hat{\chi}$ one can not use our results on self-dual posets since I and \bar{I} are not always in the same orbit.

In $F = \check{F}(2^s)$ we also have that χ is homomesic for any s, but this fails for general a even for homometry. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams.

Palindromic α .

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$. Write $\chi_k = \chi_{x_k}$ and $\hat{\chi}_k = \hat{\chi}_{x_k}$.

Proposition (EPRS)

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s)$ where $\alpha_i \geq 2$ for all i. Also let $F = \check{F}(\alpha)$ and n = #F. Let α , the black tile sequence b_1, b_2, \dots, b_s , and the red tile sequence r_1, r_2, \dots, r_{s-1} be all palindromic for all orbits.

- (a) For all k the statistic $\chi_k \chi_{n-k+1}$ is 0-mesic.
- (b) If s is odd, then for all k the statistic $\hat{\chi}_k + \hat{\chi}_{n-k+1}$ is 1-mesic.

Question

Let $F = \check{F}(\alpha)$ with α palindromic. Find necessary and/or sufficient conditions on α for the black or the red tile sequences to be palindromic for all rowmotion orbits.

Rooted trees.

A poset *T* is a *rooted tree* if its Hasse diagram is a graph-theoretic tree with a unique minimal element. Dangwal, Kimble, Liang, Lou, S, and Stewart have shown that there is a tiling model for rooted trees and that it can be used to prove many homometry results. A fence can be characterized as a poset whose Hasse diagram is a path, but with any number of minimal elements.

Question

Are there nice homoetries for posets whose Hasse diagram is a tree with any number of minimal elements?

References

- 1. Pranjal Dangwal, Jamie Kimble, Jinting Liang, Jianzhi Lou, Bruce E. Sagan, Zach Stewart. Rowmotion on rooted trees. arXiv:2208.12155.
- 2. Sergi Elizalde, Matthew Plante, Tom Roby, and Bruce E. Sagan, Rowmotion on fences. arXiv:2108.12443.
- 3. Tom Roby. Dynamical algebraic combinatorics and the homomesy phenomenon. In *Recent trends in combinatorics*, volume 159 of *IMA Vol. Math. Appl.*, pages 619–652. Springer, [Cham], 2016.
- 4. Jessica Striker. Rowmotion and generalized toggle groups. *Discrete Math. Theor. Comput. Sci.*, 20(1):Paper No. 17, 26, 2018.

TAKK FOR AT DU LYTTET! THANKS FOR LISTENING!

DANKE FÜRS ZUHOREN

MERCI POUR VOTRE ATTENTION!